



#### Real-Time Ethernet on Top of RTAI

University of Hannover ISE – Real Time Systems Group



#### **Overview**

- Motivation
- Concepts and Features
- **Recent Improvements**
- Applications at the RTS
- Summary and Outlook



#### **Motivation**

#### Ethernet technology:

- Inexpensive components
  - → Connectors and cables
  - → Network adapters
  - → Hubs or switches
  - → Embedded PCs
- High data rates
  - → 10/100/... MBit/s
- Single-cable solution
  - → Real-time data and standard TCP/IP over the same link
- → Software Solution







### **Open Source License**

- Define really <u>open</u> protocols
- Remain vendor independent (long-term availability)
- Create flexible platform for science and industry
- Use of existing OSS
  - Original version (David Schleef, 2000)
  - Drivers (Linux kernel)
  - UDP/IP stack (Linux, only in the beginning, now reference)
  - RTAI as real-time OS
- Build up user and developer community
  - 3rd-party feedback
  - Patches
  - Extensions (drivers, ICMP, etc.)



#### A Brief Look Inside...

- Linux-like NIC driver layer
- Optional media access control (RTmac)
- VNIC tunnels non real-time traffic



- Extensible stack (Layer 3 and 4)
  - Independent buffer pools (sockets, NICs, VNIC, etc.)
  - IP fragmentation supported with restrictions
- BSD socket API (UDP and Packets)



#### **Real-Time Media Access Control**

- Requires dedicated network
- RTmac controls transmission access to NIC
- Multiple access control mechanisms feasible
- Basic TDMA
  - Master transmits periodic synchronization packet (SOF)
  - Clients transmit only within a dedicated slot (offset relative to SOF)
  - Global time stamp service





# **Real-Time Configuration Protocol**

- Generic protocol consisting of 3 stages
- Independent of MAC mechanism (RTmac discipline)
- Stage 1
  - Client invitation
  - Distribution of RTmac configuration
- Stage 2
  - Hardware address exchange
  - Distribution of arbitrary configuration data
- Stage 3
  - Final synchronisation after system initialisation



#### **Network Diagnosis**

- RTcap: Real-time capturing support
- Ethereal plug-in (RTmac/TDMA, RTcfg)





## **RTnet Requirements**

- Linux 2.4.19 or better (2.6 is work-in-progress)
- RTAI 24.1.11 or better (including 3.x)
- Available for x86 and PowerPC
- Standard NIC with supported chipset
  - Intel 8255x EtherExpress Pro100
  - DEC 21x4x Tulip
  - RealTek RTL8139
  - AMD PCnet32/PCnetPCI
  - VIA Rhine
  - NatSemi DP8381x
  - MPC8xx (SCC and FEC Ethernet)
  - MPC8260 (FCC Ethernet)
  - SMSC LAN91C111



### **Recent Improvements**

- Release 0.7.0
  - API based on Real-Time Driver Model (RTDM)
  - Rewritten routing system
  - Real-time IP forwarding (allows structured RT networks)
  - Revised and new management tools (rtifconfig, rtroute, rtping)
- Real-Time Publish-Subscribe on Top of RTnet
  - OCERA component ORTE runs on RTnet
  - ORTE: GPL implementation of RTI's RTPS protocol
  - Requirements: ORTE CVS check-out, RTAI 3.x, RTnet 0.7.0
  - See www.ocera.org



## **Experimental Robots at the RTS**











#### MoRob, SPB, LiRE

- MoRob Modular Educational Robotic Toolbox
  - International project to develop a robotics framework for education and research
  - Covers hardware and software
- SPB Scalable Processing Box
  - Embedded x86 boards in a box
  - Mass storage: Flash disk
  - CAN, RS-232, RS-485, 1-2 LAN



- LiRE Linux Real-Time Environment
  - Precompiled embedded Linux/RTAI distribution
  - Runs on SPB and any RTAI-capable x86 box
  - Includes RTnet packages => simple access to RT Ethernet!

www.morob.org



#### Yet Another RT-Middleware...





#### **Distributed Real-Time Computing**











- Scenario: Interconnected 3D Laser Scanners
- ca. 100 kByte/s per scanner
- Synchronised time stamps
- Scanners with built-in RTnet
- Remote administration





Internet

14



# **Summary and Outlook**

- RTnet: Software-based hard real-time Ethernet
- Community project maintained by the RTS
- Provides foundation for both direct communication and various real-time middlewares
- Highly flexible, adaptable to project needs (network topology, unicast/broadcast, configuration, etc.)
- TDMA Version 2
  - More flexible slot assignment
  - Hot-plugging
  - Fall-back master
- Support for ARM platforms (depends a bit on RTAI...)

# RTS



rtnet.sourceforge.net

www.rts.uni-hannover.de

kiszka@rts.uni-hannover.de