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Abstract

In this paper, the Open Source project RTnet is pre-
sented. RTnet provides a customisable and extensi-
ble framework for hard real-time communication over
Ethernet and other transport media. The paper describes
architecture, core components, and protocols of RTnet.
FireWire is introduced as a powerful alternative to Ether-
net, and its integration into RTnet is presented. Moreover,
an overview of available and future application protocols
for this networking framework is given.

1 Introduction

Real-time Ethernet has grown to one of the core top-
ics in current industrial automation research and appli-
cation. A significant number of vendor-driven solutions
have shown up on the market during the last years, claim-
ing to replace traditional fieldbuses. The overview of
available solutions on [18] currently lists 16 soft and
hard real-time Ethernet variants. Most of them either re-
quire special hardware extensions to nodes or infrastruc-
ture components, or they provide only soft real-time guar-
antees. Academia approaches are typically designed to
demonstrate specific concepts and lack common OS or
hardware support. A broad overview of soft and hard real-
time protocol research is given in [7]. Some recent ap-
proaches are for example FTT-Ethernet [16], RT-EP [12],
or the combination of switches and traffic shapers [11].

All these approaches come with various transport and
application protocols as well as programming interfaces,
which are generally not compatible with each other. Ad-
ditionally, there are other transport media beyond Eth-
ernet 100Base-T approaching the real-time domain: Gi-
gabit Ethernet, wireless media as IEEE 802.11 or Blue-
tooth, and also promising trends like using FireWire for
time-critical control and measuring tasks. While this di-
versity of solutions can stimulate competition, it also in-
terferes with the portability and extensibility of applica-
tions both in research and industrial scenarios. Further-
more, the question arises which solutions can guarantee
long-term availability, especially when taking their spe-

cific hardware dependencies into account.
With the goal to provide a widely hardware-

independent and flexible real-time communication plat-
form, the RTnet project has been re-founded in 2001 at the
University of Hannover, based on ideas and source code
of a previous effort to provide deterministic networking
[10]. RTnet is a purely software-based framework for ex-
changing arbitrary data under hard real-time constraints.
The available implementation is founded on Linux with
the hard real-time extension RTAI [17].

The design of the RTnet stack as depicted in Figure 1
was inspired by the modulised structure of the Linux net-
work subsystem. It aims at scalability and extensibility in
order to comply with the different requirements of appli-
cation as well as research scenarios. RTnet’s software ap-
proach addresses both the independence of specific hard-
ware for supporting hard real-time communication and the
possibility to use such hardware nevertheless when it is
available. Furthermore, it enables the integration of vari-
ous other communication media beyond Ethernet.
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Figure 1. RTnet Stack

This paper presents the architecture of RTnet and the
realisation of its central components. Section 2 describes
the RTnet base services consisting of the stack core, the
driver interface, available transport protocols like the real-
time UDP/IP implementation, the programming interfaces
provided to management tools and real-time applications,
and the packet capturing extension RTcap. The determin-
istic media access control framework RTmac, including
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its tunnelling network devices for time-uncritical traffic
(VNIC), is introduced in Section 3. That section will
furthermore present RTnet’s default access control disci-
pline for Ethernet, TDMA, in details. Finally, Section 4
closes the stack overview by addressing the real-time con-
figuration service RTcfg. So far, the implementation of
RTnet has been focused on Ethernet. Section 5 presents
the concepts and recent advances to add real-time IEEE
1394 (FireWire) support to the framework. The section
also points out the advantages of that media type and the
possible applications in the automation domain. Further-
more, available and future application protocols and full-
featured middlewares working over RTnet are described
in Section 6.

2 Base Services

RTnet contains a set of central services which are re-
quired for most scenario. In the following, these service
will be introduced.

2.1 Packet Management
One of the crucial parts of RTnet deal with the manage-

ment of packets which contain the incoming and outgo-
ing data. Packets that ought to be transmitted are passed
through the stack in the context of the sending task, i.e.
a real-time application or an internal RTnet service. In
contrast, incoming packets are first passed from the net-
work controller driver to a so called stack manager. This
real-time task demultiplexes the packet according to their
protocol types by passing them to the respective handlers.
The priority of the stack manager has to be above all ap-
plications using RTnet services in order to avoid priority
inversions. This concept is similar to bottom-half interrupt
handling as it can be found in most operating systems.

The stack and the drivers use a unified data structure
called rtskb (derived from the Linux sk buff struc-
ture) to handle packet buffers. While classic network
stacks allocate such buffers and management structures
dynamically, RTnet has to use a different scheme due to
the real-time requirements. First, all rtskbs are preal-
located during set-up. As currently RTnet does not sup-
port buffer sharing between multiple users, the manage-
ment structure and the payload buffer are forming a single
memory fragment. And second, every rtskb has a fixed
size and can always carry the largest physical packet. This
limitation is necessary to avoid shortages due to mem-
ory fragmentation and to allow exchanging of arbitrary
rtskbs between users.

Packet producers and consumers within RTnet have to
create pools of rtskbs in order to take part in the com-
munication. During runtime, new rtskbs are allocated
from these pools. A reference in the rtskb to its original
pool allows to return it to its owner upon release. When a
packet producer hands over a rtskb to the destined con-
sumer, the ownership changes only if the consumer is able
to provide a free compensation rtskb from its own pool.

Otherwise the packet is dropped, and the related buffer
can immediately be reused.

Typical producers and consumers are the adapter
drivers on one side and the sockets on the other. But also
VNICs or management protocols like RTcfg and ICMP
provide their own pools. Pools are created or resized in
non-real-time context using the indeterministic memory
allocation service of the underlying operating system. In
order to allow socket creation and pool extension also in
real-time context, the required rtskbs are transferred in
that case from a special global pool of preallocated buffers
that has been created during the stack initialisation.

2.2 UDP/IP Implementation
Compared to a standard UDP/IP stack, several modi-

fications were required to create the deterministic variant
contained in RTnet. First, the dynamic Address Resolu-
tion Protocol (ARP) was converted into a static mecha-
nism which is executed during the set-up. If a destina-
tion address is later unknown, no resolution requests are
issued but a transmission error is returned to the caller.
Otherwise, the worst case transmission latency of a packet
would include the delay of a potential address resolution.

Second, the routing process was simplified. The output
routing tables were optimised for the limited amount of
entries used with RTnet. To accelerate the packet set-up,
the tables also include the ARP results, i.e. the destination
hardware addresses.

The defragmentation of IP packets needs special atten-
tion. In classic network stacks, this task is performed by
the IP layer before any higher layers like UDP are in-
volved. Thus, as the actual receiver is yet unknown, a
global rtskb pool is required for buffering all fragments
before the last one has arrived. The addition of new frag-
ments to an existing chain demands a lookup in the global
list of all currently pending IP packets chains. Further-
more, incomplete chains have to be cleaned up after a
timeout to avoid buffer shortages and to keep the global
IP fragment list small.

The UDP/IP stack of RTnet contains several mecha-
nisms to confine the effects of the defragmentation as far
as possible to the receiving socket. For this purpose, the
first fragment is used to immediately resolve the destina-
tion socket using an extended interface to layer 4. This
information is then stored together with the fragment in a
collector data structure. Further fragments are identified
as usual by their IP addresses and IDs. To allow an effi-
cient implementation of the collector, incoming fragments
have to arrive in a strictly ascending order, otherwise the
whole chain is dropped. Incomplete chains are cleaned
up when the related socket is closed. The total number of
collectors is limited in order to be able to specify an upper
bound for the lookup latency.

2.3 Driver Layer
Network interface cards (NIC) are attached to the stack

core using a Linux-like driver interface. This allows



straightforward porting of standard Linux drivers to RT-
net, which has already been performed for about ten
widely-used NICs. The NIC initialisation, configuration,
and shutdown is still performed in non-real-time context
under RTnet; porting standard drivers only requires to use
the appropriate synchronisation mechanisms of the under-
lying RTOS here. However, special care has to be paid on
the time-critical reception and transmission paths. They
have to be audited in order to detect and avoid potential
long delays while accessing the hardware.

A few extensions compared to the standard driver
model are required to provide accurate timestamp ser-
vices. RTnet does not depend on built-in timestamp clocks
of the NIC, which are still not commonly available. In-
stead, the driver has to provide the packet reception and
transmission time as precise as feasible. This means that
the reception timestamp has to be taken for every packet
right at beginning of the interrupt handler called upon the
arrival. Furthermore, the driver has to provide the func-
tionality to store the current time in an outgoing packet
and trigger its transmission atomically. These measures
widely reduce packet timestamp jittery to the single inter-
rupt jitter which characterises platform and RTOS.

The driver layer furthermore provides two per-device
hooks for redirecting transmission requests and MTU
(maximum transmission unit) queries. Both hooks are
transparent to the drivers. The transmission hook is used
by the media access control layer RTmac and the captur-
ing extension RTcap for managing, respectively, analysing
outgoing packets. While standard network stacks typi-
cally provide only static device MTUs, RTnet offers log-
ical channels of variable size up to the physical MTU to
higher layers. The RTmac discipline TDMA utilises these
channels to enforce specific slot sizes (see Section 3.2).

2.4 Application Programming Interface

Application programs can attach to the RTnet real-time
services via a widely POSIX-conforming socket and I/O
interface. The socket interface offers UDP and packet
sockets for exchanging user data deterministically. The
I/O interfaces provides access to additional features that
services like TDMA (see Section 3.2) exports to users, for
example clock synchronisation. Just as RTAI, RTnet per-
mits both the classic kernel mode and more convenient
user mode usage (Linux processes) of the API.

The related socket and I/O API functions are part of a
separate interface concept called Real-Time Driver Model
(RTDM). This interface addresses the specific require-
ments when accessing hardware on a mixed real-time sys-
tem like Linux/RTAI, for instance differentiation between
real-time and non-real-time service invocation. Currently,
an implementation of RTDM comes with RTnet, but plans
exist to merge the functionality into the RTAI project. This
would also enable to utilise RTDM for other real-time de-
vices drivers beyond RTnet.

2.5 Capturing Extension
A powerful extension of the RTnet core is the RTcap

plug-in. It acts as a standard traffic capturing service
for both incoming and outgoing packets over real-time
NICs. Arriving packets are recorded together with a re-
liable high precision timestamp, solely depending on the
interrupt jitter of the capturing system. RTcap adds only
a small bounded overhead to the time-critical data paths
when being installed on an active RTnet node. It further-
more cannot starve out any other packet user with respect
to rtskbs because it maintains separate buffer pools for
captured packets.

Figure 2. Using Ethereal with RTnet

Normal analysis network tools can be used with RT-
cap because a pseudo, read-only network device is created
for every real-time NIC to forward the captured packets.
Especially Ethereal [5], shown in Figure 2, is well-suited
to dissect real-time communication as it fully understands
the RTnet protocols. But the usage of RTcap in combi-
nation with traffic analyser is, of course, not limited to
RTnet-managed networks or Ethernet. In principle, any
transport media with RTnet-enabled drivers can be stud-
ied with RTcap’s high timestamp accuracy.

3 Real-Time Media Access Control

As important as a real-time-capable stack implemen-
tation is a deterministic communication media. For in-
stance, standard Ethernet, so far RTnet’s primary media,
does not provide adequate Quality of Service (QoS) fea-
tures for hard real-time applications. Unpredictable colli-
sions in hub-based Ethernet segments prevent short deter-
ministic transmission times. Switches can overcome this
issue but suffer from the risk of congestions which lead
to packet delays or drops. QoS-enabled switches accord-
ing to IEEE 802.1q are partly improving this situation, but
they still require a centralised cabling which is often too
costly for industrial applications.

Also other shared communication media may demand
additional control over outgoing traffic in order to trans-
late QoS parameters to a media-specific scheme or to ex-



tend existing QoS features where necessary. RTnet ad-
dresses the demand for deterministic and flexible media
access control (MAC) mechanisms with its RTmac layer
as described in the following. Moreover, as an example
of a MAC discipline which is pluggable into the RTmac
interface, a TDMA-based protocol is presented.

3.1 Pluggable MAC Layer
The RTmac is an optional extension to the RTnet stack.

Although the stack is already functional without RTmac,
it becomes mandatory if an underlying communication
media lacks a deterministic access protocol. The RTmac
layer was designed to provide these four elementary ser-
vices to arbitrary software-based MAC implementations,
here called disciplines:

• Interception of the crucial packet output path and
redirection to discipline-specific handlers. For trans-
mitting packets, this is performed right before the
packet is passed to the NIC driver. Furthermore, a
handler to override the device MTU on a per-packet
basis can be installed.

• Exchanging discipline-defined control or data mes-
sages in a RTmac frame aside any user protocols.

• Discipline management on a per-device basis. To
every real-time NIC, an individual MAC discipline
can be assigned when it was registered with the RT-
mac layer.

• Packet tunnelling service for time-uncritical data as
generated or received by the non-real-time network
stack. This service creates a virtual network de-
vice for every RTmac-managed real-time NIC. Tun-
nelled packets are encapsulated by the RTmac proto-
col frame to distinguish between otherwise identical
real-time and non-real-time protocols like UDP.

3.2 TDMA Discipline
Primarily for the use with standard Ethernet, RTnet

provides a timeslot-based MAC discipline called TDMA
(Time Division Multiple Access). TDMA in its current
revision 2 is a master-slave protocol. It synchronises the
clocks of RTnet nodes within a network segment. Fur-
thermore, it defines the transmission time of any payload
packet relative to sychronisation messages the master is-
sues periodically.

A TDMA slave node can join a running network seg-
ment at any time provided it knows at least one parameter
set of its slots. This set can either be configured stati-
cally or distributed via the RTcfg protocol (see Section 4).
Given these parameters, the slave starts to join by sending
a calibration request to the master. The master, in turn,
replies with a message that contains the request arrival and
reply departure times, both as precise as the system allows
(see also Section 2.3). By taking its local departure and ar-
rival times into account, the slave is able to calculate the

packet round-trip delay. This procedure is repeated over
a certain interval in order to estimate the medium time
ttravel between starting to transmit a packet on the master
and gaining its reception time on the slave.

ttravel =
1
2n

n∑
i=1

T slave
recv,i − T slave

xmit,i −

(Tmaster
xmit,i − Tmaster

recv,i ) (1)

The master’s synchronisation message contains the
scheduled transmission time Tsched together with the
timestamp taken right before packet release. This permits
the slave to compensate potential scheduling jitters on the
master node when calculating toffset, the offset between
local and global system clock. The slave can furthermore
improve the precision of its own slot starting times Tslot.

toffset = Tmaster
xmit + ttravel − T slave

recv (2)
Tslot = Tsched + tslot − toffset (3)

Time slots can be freely arranged within an elemen-
tary TDMA cycle as depicted in Figure 3. Besides node
assignment and offset, also the slot size can be defined
within physical limits of the transport media. TDMA al-
lows that a node uses multiple time slots per cycle. Fur-
thermore, it is possible to set custom periodicity and phas-
ing of a slot to limit the network load or to share slots be-
tween different nodes. A management tool is available un-
der Linux to create and maintain individual configurations
based on scripts. Even a runtime reconfiguration within
certain constraints is feasible.
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Figure 3. Flexible TDMA Slot Setup

In case multiple packets have been queued on a slot,
the transmission order is defined by their priorities which
can be set by real-time applications or RTnet services for



each message. 31 real-time levels are available, the 32nd
and lowest one is reserved for time-uncritical data, i.e.
VNIC traffic. With multiple slots per node, the need for a
scheduling scheme arises. For efficiency reasons, TDMA
provides explicit scheduling only. Slots are numbered on
each node with ID 0 predefined for default real-time and
ID 1 for non-real-time traffic. In case only a single slot is
available, ID 1 is mapped on slot 0. Any additional slots
are reserved for explicit assignment to arbitrary real-time
applications via the socket API.

As the master is a single point of failure, its services
can be backed up by one or more secondary masters.
An additional time slot has to be assigned to every such
backup master, marked as “Bck. Slot” in Figure 3. In
case the primary master fails to transmit a synchronisa-
tion message, the next backup master on the time axis
will start issuing its own messages. The offset between
primary and secondary master is automatically compen-
sated with a now larger difference between scheduled and
actual transmission time contained in every synchronisa-
tion frame. When the primary master has been fixed and
starts taking over again, it first synchronises its own clock
on the active backup master in order to avoid significant
clock skews. Afterwards it issues its own synchronisation
messages again, and the backup master switches to stand-
by.

The TDMA discipline creates a RTDM I/O device for
every controlled network device. These I/O devices can
be used to retrieve the clock offset introduced above and
to synchronise a real-time task on the TDMA cycle.

4 Real-Time Configuration Service

During the revision of the first TDMA protocol it be-
came apparent that a clear separation between RTmac dis-
ciplines on the one side and generic configuration as well
as monitoring services on the other is essential for RTnet’s
extensibility. For this reason, the Real-Time Configura-
tion Service RTcfg has been designed in a discipline- and
media-agnostic manner. It does not depend on a specific
communication media given that broadcast transmissions
are supported. The IPv4 protocol is supported but not
mandatory. Other network protocols like IPv6 can be in-
tegrated, and physical addresses may be used even purely.
The concrete tasks of RTcfg are:

• Distribution of essential discipline configuration data
to newly joining nodes. This information is issued
unsolicited, thus enabling nodes to join real-time net-
works on-the-fly as far as physical media and RTmac
discipline allow.

• Monitoring of active nodes and exchange of their
physical and logical addresses. This service can be
used, for example, to set up and maintain the static
ARP tables mentioned in Section 2.2. It is further-
more possible to build real-time network monitoring
tools on top of RTcfg’s interfaces.

• Synchronisation of the real-time network start-up
procedure. Specific RTmac disciplines or certain ap-
plication scenarios may require common rendezvous
points in order switch network mode or start applica-
tions synchronously.

• Distribution of arbitrary configuration data, even in
the absence of TCP/IP with its typically used file
transfer protocols like TFTP/FTP etc.

RTcfg is based on a client-server protocol. A central
configuration server stores parameter sets of every man-
aged client in a network segment. This information is used
by the server to continuously invite any known but yet
inactive client to join. The client’s start-up procedure as
shown in Figure 4 consists of three stages. The first stage
is completed after the client has received its single packet
of initial parameters that is identifiable either through the
physical or logical destination address. These parameters
typically contain the minimum information required to set
up a possible RTmac discipline, for example at least one
TDMA slot configuration.

In the second stage after completing the discipline ini-
tialisation, the client announces its presence to any other
network nodes which can then update their address infor-
mation like static ARP tables. Already active clients reply
on this announcement by sending the new node their own
identification. The server replies in contrast by transmit-
ting an optional second set of configuration data which
can be scattered over multiple packets. After the server
has received the final stage 2 acknowledge message from
the last missing client node, the network is ready for a po-
tential common operating mode switch in case such syn-
chronisation is required.

As stage 3, an optional second rendezvous point is pro-
vided to both server and clients. It can be utilised to wait
for all nodes to complete processing the configuration data
they received during stage 2.

RTcfg
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New
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Stage 1 Config (if broadcasted)

Process Config
(e.g. TDMA Setup)

Announce

Update
IP Routes

Update
IP Routes Update

IP Routes

Stage 2 Config

Acknowledge

Process Config

Stage 3 Ready

(broadcasted)

(broadcasted)

Announce

(broadcasted)

(broadcasted)
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Assemble
Config

Rendezvous
Point 1

Rendezvous
Point 2

Figure 4. RTcfg Client Start-up in 3 Stages

After the setup completion the clients can be instructed
to transmit low-frequent heartbeat frame to the server in



order to track potential node failures. If the server detects
lacking heartbeat frames, it declares the client dead by
broadcasting a related message to the remaining nodes. As
a result, all nodes will remove any address of the broken
client from their local tables. This enables a restart pro-
cedure of the repaired or replaced node. A failing RTcfg
server can also be restarted, even on a different system,
without the need to go through the full start-up procedure
of every running node once again.

5 Integration of FireWire

FireWire, also known as IEEE 1394 [8], is a high-
performance serial bus for connecting heterogeneous de-
vices. Though firstly targeted for consumer-electronic ap-
plications, such as high-speed video transmission, many
of FireWire’s features make it well fit industrial and labo-
ratorial context. In the following subsections, an overview
of FireWire is given and the current status of its integra-
tion into RTnet is described.

5.1 FireWire Overview
The bus topology of FireWire is tree-like, i.e. non-

cyclic network with branch and leaf nodes. The physi-
cal medium supports data transmission up to 400 Mbps
in 1394a specification. In 1394b specification, the speed
even rises to 3.2 Gbps. Two types of data transaction are
supported on FireWire: asynchronous and isochronous.
As illustrated in Figure 5, a mix of isochronous and asyn-
chronous transaction is performed by sharing the overall
bus bandwidth, of which the allocation is based on 125 µs
intervals, so called FireWire cycles.

Cycle

Start

125 µs

Cycle N

Up to 64 channels

Isochronous Packet in different channels

Asynchronous Packet

Cycle N+1

Cycle

Start
Ch 0 Ch n...Ch 1

Cycle N-1

Figure 5. FireWire Cycle

Isochronous transaction targets one or more nodes by
being associated with a multicasting channel number.
There can be maximally 64 channels in total. Once bus
bandwidth has been allocated for an isochronous transac-
tion, the associated channel can receive a guaranteed time-
slice during each 125 µs cycle. Up to 80% (100 µs) of
each bus cycle can be allocated to isochronous channels.
Because this transaction type does not re-transmit broken
packets, but deliver data at constant, real-time rate, it is
well suited for the time-triggered state message transmis-
sion in distributed control systems.

In the asynchronous transaction phase, the whole net-
work on FireWire appears as a large 64-bits mapped

bus address space, with each node occupying a 48-bits
mapped space. The high-order 16 bits of address are used
to identify nodes1. An asynchronous transaction is split
into two sub-transactions: request to access a piece of
address on another node and response. Coordination be-
tween request and response is ascertained by the trans-
action layer protocol. Since guaranteed data delivery is
provided through acknowledgement, asynchronous trans-
action is targeted for non-error-tolerant applications, like
command and control message transmission in distributed
control system.

Bus management on FireWire includes different re-
sponsibilities that can be distributed among one or more
nodes: Cycle Master, Isochronous Resource Manager and
Bus Manager. The Cycle Master broadcasts a start mes-
sage at the beginning of each cycle. The Isochronous Re-
source Manager takes care of the allocation of bus band-
width and isochronous channels. The Bus Manager has
several functionalities including publishing the bus speed
map and the bus topology map. Since FireWire connects
devices that may not support the same top speed of data
transmission, the bus speed map is used by a certain node
to determine at what speed it can communicate with an-
other node. The topology map may be used by end-users
to optimise the bus topology for a highest throughput.

5.2 FireWire Stack and RTnet Integration
The FireWire stack, as shown in Figure 6, is adapted

from the Linux variant[9]. Functions in the kernel are de-
coupled into several modules. Application on the stack
acquires either a portion of bus address or one or more
multicasting channels, by using the primitives from the
Application Interface and Management layer.

Application Layer 

Application Interface and Management

FireWire Stack Kernel

Driver

FireWire NIC

Real-Time
Packet 
Management

Asynchronous
Dispatcher

Isochronous
Dispatcher

Transaction
Layer

Bus
Manage
-ment

Figure 6. FireWire Stack

The RTnet mechanism for real-time packet manage-
ment is applied to the FireWire stack as well. Both NIC
driver and high-level applications are potential produc-
ers and consumers of packets. All packets are carried
by a generic packet buffer structure rtpkb. Like in RT-
net, pre-allocation of rtpkbs is done during set-up, with

1Here, we only talk about the peer-to-peer asynchronous transaction.
In 1394a supplement, the multicasting packet in asynchronous transac-
tion is also defined.



each rtpkb carrying a fixed size of payload that is large
enough to meet various scenarios.

The path of delivering incoming packets to application
layer is realised by a real-time task, the so-called tasklet
server. Upon arrival of a new packet, a suitable processing
routine, either for asynchronous or isochronous, is hooked
to the server as a tasklet. The server works under the rule
First In First Served (FIFS), which means the packets are
processed in the order of arrival time. When no tasklet is
being queued, the server stays in idleness until the next
packet arrives. A RTOS semaphore is used for the syn-
chronisation between server and tasklet queue. Like the
stack manager in RTnet, the server runs at a higher prior-
ity than application tasks.

The connection between FireWire stack and RTnet core
is implemented through Ethernet emulation. The emu-
lation is a module on application layer, using a portion
of bus address to employ a protocol converting FireWire
packets to Ethernet packets and vice versa. By using
Ethernet emulation, FireWire functions the same as other
real-time Ethernet devices in RTnet.

6 Application Protocols and Frameworks

The advantage that RTnet provides its real-time com-
munication services through a widely standardised API
instead of, for example, a specialised, solely fieldbus-
oriented interface becomes obvious when considering ap-
plication protocol layers. This section introduces some of
them and also presents an exemplary concept for mapping
an existing fieldbus middleware, CANopen, on RTnet’s
services.

6.1 netRPC – Remote Real-Time Procedure Calling
One of the first user of RTnet was its primary real-time

execution platform itself. RTAI (3.x series) [17] comes
with a plug-in called netRPC that enables a distributed us-
age of its RTOS services. This remote procedure calling
service (RPC) is built upon the UDP/IP protocol. It can ei-
ther be attached to the Linux non-real-time network stack,
typically for testing and demonstration purposes, or to the
RTnet API. In the latter case distributed hard real-time is
provided to the RTAI applications almost transparently.
Some of the RTAI developers make use of this feature
in their real-time multi-body dynamics analysis software
MBDyn [13].

6.2 RTPS Protocol
The Real-Time Publish-Subscribe Protocol (RTPS)

[14] has been developed in order to provide real-time com-
munication services over unreliable IP networks like Eth-
ernet. The protocol contains mechanisms to detect criti-
cal packet delays or losses and avoids indeterministic re-
transmissions, as for example TCP causes, by using UDP
as transport protocol. In order to keep real-time communi-
cation operational on Ethernet, only a low network load is

acceptable in RTPS segments. RTPS is available as a com-
mercial product (NDDS) and is included in various indus-
trial products, for instance in certain Schneider PLCs.

Moreover, an Open Source implementation of RTPS
called ORTE [2] is available. ORTE runs on a large num-
ber of platforms over conventional UDP/IP stacks and, ad-
ditionally, supports RTnet on top of RTAI. By utilising
RTnet’s hard real-time UDP/IP services, RTPS can now
be used even under high non-real-time network load, as
RTnet reliably separates this traffic from the time-critical
data.

6.3 Real-Time Control Frameworks
Both for research and industrial scenarios, increasingly

complex control tasks demand powerful frameworks to fa-
cilitate the development of distributed real-time systems.
One of such frameworks has been developed at the Real-
Time Systems Group in Hannover with the focus on ro-
botic research [20]. This framework transparently sup-
ports distributed applications both deterministically over
RTnet (UDP/IP) and without timing guarantees over stan-
dard TCP/IP. Its communication models include remote
procedure calling as well as producer-consumer schemes.

A similar framework, OROCOS, also makes use of RT-
net for closed-loop control [15]. Moreover, plans exist
for OROCOS and the related OCEAN project to run RT-
CORBA over RTnet. The latter project already evaluated
an earlier version of RTnet and concluded that integrating
it as pluggable protocol into the RT-CORBA implementa-
tion ACE/TAO is a promising approach [19].

6.4 CANopen
The CAN in Automation organisation has developed

CANopen as an application protocol and device model for
the automation domain [1]. Beyond its original use on top
of the CAN fieldbus, CANopen has recently been adopted
by two commercial real-time Ethernet solutions, ETHER-
NET Powerlink [3] and EtherCAT [4]. Both approaches
are, as well as RTnet, quite different compared to the CAN
bus with respect to node addressing, message priorities, or
communication models. Therefore, ETHERNET Power-
link and Ethercat only reuse the device profiles specified
by CANopen. In following, the feasibility and potential
of adopting CANopen to RTnet is briefly analysed. Such
an extension would enable classic automation applications
like soft-PLCs to run more straightly over RTnet.

As CAN itself is agnostic to message source and des-
tination addresses, CANopen maps the common three
addressing modes broadcast, unicast, and multicast on
CAN message identifiers. Broadcast messages are used
for network management, synchronisation, time stamp-
ing, and alarming purposes. CANopen exchanges so
called Service Data Objects (SDO) for time-uncritical di-
rect communication between two nodes as unicast mes-
sages. Process Data Object carrying the real-time data are
transmitted according to the multicast scheme with a sin-
gle producer and an arbitrary number of consumers.



RTnet supports broadcast as well as unicast both via
UDP and user-defined Ethernet protocols. As multicast
support is not yet part of RTnet, such messages can be
issued transitionally either via unicast in case only a sin-
gle consumer exists or as broadcasts using additional soft-
ware filters on the receiving nodes. Basically, an exten-
sion of the Communication Object ID (COB-ID) format is
required, which was originally defined with solely CAN
IDs in mind. While CAN prioritise messages implicitly
according to their ID, an explicit value is now required
which also encode the output channel on RTnet. An ex-
tended COB-ID would demand the following fields:

• ID type (UDP/IPv4, UDP/IPv6, Ethernet, CAN, etc.)

• Destination node address (IP, Ethernet MAC, etc.)

• Message ID (UDP destination port, Ethernet frame
type, CAN ID, etc.)

• Priority and channel (RTmac queuing priority,
TDMA slot, etc.)

The CAN-specific Remote Transmission Requests
(RTR) are utilised by consumers for soliciting a PDO from
the producer. This protocol can be emulated by sending an
empty PDO with identical COB-ID to the producer.

Based on the proposed addressing scheme, typical
CANopen stacks, for instance one of the various free im-
plementations [6], may already be reused on top of RT-
net. Certain CANopen services could be mapped directly
on RTnet equivalents. RTcfg provides heartbeat mech-
anism which can replace CANopen’s variant. TDMA
comes with an API to synchronise nodes and distribute
a common time base, services that be used in place of
the CANopen protocol. Additional optimisation potential
lies in larger transfer fragments when exchanging SDOs.
CANopen’s limitation to CAN-related 8 bytes can be eas-
ily overcome by defining new, COB-ID-specific SDO up-
load and download protocols that make use of different
maximum packet sizes (e.g. almost 64 KB via UDP/IP).

7 Summary and Outlook

This paper introduced RTnet as an adaptable and ex-
tensible framework for deterministic communication over
standard Ethernet, FireWire, or other suited media. Its
open, standard-oriented, and modulised structure allows
numerous application scenarios like distributed real-time
systems, fieldbus coupling devices, intelligent I/O inter-
faces, low-cost real-time network analysers, etc. Applica-
tion software may either interact directly with the RTnet
API, or middlewares like RTPS or CANopen can be build
over RTnet’s services.

Future work will focus on further integration of
FireWire, new media like Gigabit Ethernet, and interop-
eration with additional middlewares. To decouple organi-
sational dependencies, the RT-FireWire stack has recently
become a separate project. Based on the connection to

RTnet via Ethernet emulation, the adoption of FireWire’s
transaction modes and clock synchronisation for RTnet
services will now be addressed. Furthermore, the poten-
tial of layering CANopen over RTnet will be analysed and
can lead to the implementation of an extended CANopen
stack.

The current RTnet implementation has been build upon
free software, it tightly interacts with many Open Source
projects, and it is therefore available under Open Source
licenses, too. For downloads and further information, visit

www.rts.uni-hannover.de/rtnet
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